4737 Decision Mathematics 2

\begin{tabular}{|c|c|c|c|c|c|}
\hline 3 \& (i) \& \[
\begin{aligned}
\& 4+3-2+8-2+7 \\
\& =18 \text { litres per second }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
Answered on insert \\
Imply method mark from 18,20 or 22 \\
cao
\end{tabular} \& [2] \\
\hline \& (ii) \& \begin{tabular}{l}
3 litres per second flow out of \(B\) (arc \(B D\)) so only 2 litres per second can enter \(B\) from \(E\) and only 1 litre per second can enter \(B\) from \(S\). \\
At least 4 litres per second flow out of \(E\) to \(G, 2\) litres per second from \(E\) to \(B\) and 2 litres per second from \(E\) to \(H\), so 8 litres per second must flow into \(E\) from \(C\). \\
8 litres per second flows from \(C\) to \(E\) and at most 11 litres per second enters \(C\) from \(S\), so at most 3 litres per second flows from \(C\) to \(H\). Also, 2 litres per second flow from \(E\) to \(H\) so the most that can enter \(H\) is 5 litres per second. But at least 5 litres per second leave \(H\) along \(H T\), hence the flow in \(H T\) is 5 litres per second.
\end{tabular} \& B1
B1

M1

A1 \& | At B: 3 out and $1+2$ in |
| :--- |
| At E : (at least) $4+2+2$ out |
| Considering C to show flow in $C H$ is at most 3 Must explicitly refer to ≤ 3, or $2 \leq$ flow ≤ 3, not just stating 3 |
| At $H: 2+3$ in | \& [4]

\hline \& (iii) \& | Flow augmenting route: SADFT or $\boldsymbol{S} \boldsymbol{A} \boldsymbol{D} \boldsymbol{G} \boldsymbol{T}$ |
| :--- |
| Cut: $X=\{S, B\}, Y=\{A, C, D, E, F, G, H, T\}$ |
| Or $X=\{S, A, B\}, Y=\{C, D, E, F, G, H, T\}$ | \& M1

A1
B1

B1 \& | Substantially correct attempt (at least 12 correct) |
| :--- |
| (Not shown as excess capacities and potential backflows) |
| All correct (cao) |
| Either of these (correct) flow augmenting routes |
| Either of these (correct) cuts described in any way, or marked clearly on diagram | \& [4]

\hline \& (iv) \& B would have at most 3 litres per second entering it and at least 5 litres per second leaving. \& $$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& Identifying that problem is at B A correct explanation \& [2]

\hline \multicolumn{5}{|r|}{Total =} \& 12

\hline
\end{tabular}

